Note 1 : Recommended statistics for this type of classification highlighted in aqua
Note 2 : The recommendation system assumes the input is the result of classification over the entire dataset, not just a subset. If the confusion matrix is based on test data classification, the recommendation may not be valid.
Actual | Predict
|
Class | 0 | 1 | 2 | Description |
ACC | 1.0 | 0.89474 | 0.89474 | Accuracy |
AGF | 1.0 | 0.92297 | 0.799 | Adjusted F-score |
AGM | 1.0 | 0.88655 | 0.87294 | Adjusted geometric mean |
AM | 0 | 2 | -2 | Difference between automatic and manual classification |
AUC | 1.0 | 0.90057 | 0.81609 | Area under the ROC curve |
AUCI | Excellent | Excellent | Very Good | AUC value interpretation |
AUPR | 1.0 | 0.88542 | 0.7619 | Area under the PR curve |
BB | 1.0 | 0.83333 | 0.66667 | Braun-Blanquet similarity |
BCD | 0.0 | 0.02632 | 0.02632 | Bray-Curtis dissimilarity |
BM | 1.0 | 0.80114 | 0.63218 | Informedness or bookmaker informedness |
CEN | 0 | 0.22934 | 0.35141 | Confusion entropy |
DOR | None | 95.0 | 56.0 | Diagnostic odds ratio |
DP | None | 1.09038 | 0.96383 | Discriminant power |
DPI | None | Limited | Poor | Discriminant power interpretation |
ERR | 0.0 | 0.10526 | 0.10526 | Error rate |
F0.5 | 1.0 | 0.85227 | 0.81081 | F0.5 score |
F1 | 1.0 | 0.88235 | 0.75 | F1 score - harmonic mean of precision and sensitivity |
F2 | 1.0 | 0.91463 | 0.69767 | F2 score |
FDR | 0.0 | 0.16667 | 0.14286 | False discovery rate |
FN | 0 | 1 | 3 | False negative/miss/type 2 error |
FNR | 0.0 | 0.0625 | 0.33333 | Miss rate or false negative rate |
FOR | 0.0 | 0.05 | 0.09677 | False omission rate |
FP | 0 | 3 | 1 | False positive/type 1 error/false alarm |
FPR | 0.0 | 0.13636 | 0.03448 | Fall-out or false positive rate |
G | 1.0 | 0.88388 | 0.75593 | G-measure geometric mean of precision and sensitivity |
GI | 1.0 | 0.80114 | 0.63218 | Gini index |
GM | 1.0 | 0.89981 | 0.8023 | G-mean geometric mean of specificity and sensitivity |
HD | 0 | 4 | 4 | Hamming distance |
IBA | 1.0 | 0.86946 | 0.45131 | Index of balanced accuracy |
ICSI | 1.0 | 0.77083 | 0.52381 | Individual classification success index |
IS | 1.54749 | 0.98489 | 1.85561 | Information score |
J | 1.0 | 0.78947 | 0.6 | Jaccard index |
LS | 2.92308 | 1.97917 | 3.61905 | Lift score |
MCC | 1.0 | 0.79218 | 0.69332 | Matthews correlation coefficient |
MCCI | Very Strong | Strong | Moderate | Matthews correlation coefficient interpretation |
MCEN | 0 | 0.32202 | 0.42664 | Modified confusion entropy |
MK | 1.0 | 0.78333 | 0.76037 | Markedness |
N | 25 | 22 | 29 | Condition negative |
NLR | 0.0 | 0.07237 | 0.34524 | Negative likelihood ratio |
NLRI | Good | Good | Poor | Negative likelihood ratio interpretation |
NPV | 1.0 | 0.95 | 0.90323 | Negative predictive value |
OC | 1.0 | 0.9375 | 0.85714 | Overlap coefficient |
OOC | 1.0 | 0.88388 | 0.75593 | Otsuka-Ochiai coefficient |
OP | 1.0 | 0.85373 | 0.71164 | Optimized precision |
P | 13 | 16 | 9 | Condition positive or support |
PLR | None | 6.875 | 19.33333 | Positive likelihood ratio |
PLRI | None | Fair | Good | Positive likelihood ratio interpretation |
POP | 38 | 38 | 38 | Population |
PPV | 1.0 | 0.83333 | 0.85714 | Precision or positive predictive value |
PRE | 0.34211 | 0.42105 | 0.23684 | Prevalence |
Q | None | 0.97917 | 0.96491 | Yule Q - coefficient of colligation |
QI | None | Strong | Strong | Yule Q interpretation |
RACC | 0.11704 | 0.19945 | 0.04363 | Random accuracy |
RACCU | 0.11704 | 0.20014 | 0.04432 | Random accuracy unbiased |
TN | 25 | 19 | 28 | True negative/correct rejection |
TNR | 1.0 | 0.86364 | 0.96552 | Specificity or true negative rate |
TON | 25 | 20 | 31 | Test outcome negative |
TOP | 13 | 18 | 7 | Test outcome positive |
TP | 13 | 15 | 6 | True positive/hit |
TPR | 1.0 | 0.9375 | 0.66667 | Sensitivity, recall, hit rate, or true positive rate |
Y | 1.0 | 0.80114 | 0.63218 | Youden index |
dInd | 0.0 | 0.15 | 0.33511 | Distance index |
sInd | 1.0 | 0.89393 | 0.76304 | Similarity index |
Generated By PyCM Version 4.2